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ABSTRACT

Context. Transverse oscillations are ubiquitously observed in the solar corona, both in coronal loops and open magnetic flux tubes.
Numerical simulations suggest that their dissipation could heat coronal loops, counterbalancing radiative losses. These models rely
on a continuous driver at the footpoint of the loops. However, analytical works predict that transverse waves are subject to a cut-off in
the transition region. It is thus unclear whether they can reach the corona, and indeed heat coronal loops.
Aims. Our aims are to determine how the cut-off of kink waves affects their propagation into the corona, and to characterize the
variation of the cut-off frequency with altitude.
Methods. Using 3D magnetohydrodynamic simulations, we modelled the propagation of kink waves in a magnetic flux tube, embed-
ded in a realistic atmosphere with thermal conduction, that starts in the chromosphere and extends into the corona. We drove kink
waves at four different frequencies, and determined whether they experienced a cut-off. We then calculated the altitude at which the
waves were cut-off, and compared it to the prediction of several analytical models.
Results. We show that kink waves indeed experience a cut-off in the transition region, and we identified the analytical model that
gives the best predictions. In addition, we show that waves with periods shorter than approximately 500 s can still reach the corona by
tunnelling through the transition region, with little to no attenuation of their amplitude. This means that such waves can still propagate
from the footpoints of loop, and result in heating in the corona.
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1. Introduction

Recent advances in observations and modelling have shown
that magnetohydrodynamic (MHD) waves could significantly
contribute to the heating of the solar corona (see review by
Van Doorsselaere et al. 2020). In particular, transverse waves are
ubiquitously observed, and they come in several kinds. The type
that was first discovered are the transverse waves that are impul-
sively excited after a flare (Nakariakov et al. 1999). However,
these transverse waves are only sporadically excited and do not
play an important role in the energy budget of the solar corona
(Terradas & Arregui 2018). Later on, it was discovered that the
corona is filled by small-amplitude transverse waves (Tomczyk
et al. 2007; Tomczyk & McIntosh 2009; McIntosh et al. 2011;
Tian et al. 2012). These were observed in coronal loops as prop-
agating (Tiwari et al. 2019) or standing waves (Anfinogentov
et al. 2015). These low-amplitude transverse waves were also
observed as propagating waves in open-field regions (Thurgood
et al. 2014; Morton et al. 2015). These low-amplitude waves
show little-to-no decay (Morton et al. 2021) and are thus named
“decayless”.

Because the flare-excited standing waves are rapidly decay-
ing (Goddard et al. 2016; Nechaeva et al. 2019) due to reso-
nant absorption (Goossens et al. 2002) and non-linear Kelvin-
Helmholtz instability (KHI) damping (Terradas et al. 2008; An-
tolin et al. 2014; Van Doorsselaere et al. 2021; Arregui 2021),
it is generally thought that the decayless waves must be con-
tinuously supplied with energy to counteract its strong damp-

ing. Several mechanisms for excitation have been proposed: slip-
stick driving with steady flows (Nakariakov et al. 2016; Karam-
pelas & Van Doorsselaere 2020), vortex shedding (Nakariakov
et al. 2009; Karampelas & Van Doorsselaere 2021) or footpoint
driving (Nisticò et al. 2013; Karampelas et al. 2017) through p-
modes (Morton et al. 2019) or convective shuffling. The latter
option of footpoint driving has had some success in generating
standing mode decayless waves (Afanasyev et al. 2020), which
counterbalance the non-linear damping through the KHI (Guo
et al. 2019) and lead to heating of loops (Shi et al. 2021).

However, for the driving of decayless waves through their
footpoints, it is not well understood how the transverse waves
propagate through the complicated structure of the chromo-
sphere and transition region. The simulations of transverse-wave
induced KHI heating (e.g. Karampelas et al. 2019) only take into
account the coronal part of the loop, that is imposing a driver at
the top of the transition region. To properly model the whole loop
evolution due to the wave heating, it is essential to also model the
wave driver in the photosphere, and accurately capture its influ-
ence on the coronal loop dynamics.

In plane-parallel atmospheres, the propagation of fast and
slow waves has been well studied. It was found that these modes
couple efficiently to Alfvén waves through resonant absorption
(Hansen & Cally 2009; Cally & Andries 2010; Khomenko &
Cally 2012). Currently, investigations are ongoing to what hap-
pens if the cross-field structuring is included into the wave prop-
agation model (Cally & Khomenko 2019; Riedl et al. 2019,
2021). Another crucial ingredient is the wave’s behaviour in
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strong (i.e. non-WKB) stratification. It is well-known that slow
waves experience a cut-off while propagating through a stratified
medium (Bel & Leroy 1977). This has been verified observation-
ally (Jess et al. 2013) and numerically (Felipe et al. 2018). Still,
up to now, it is unknown if a similar cut-off exists for transverse
waves in structured media. For the driving of the observed decay-
less waves in the corona, this is a crucial property to understand.

Several analytical works predict that transverse waves are
cut-off in the transition below a given frequency. The first for-
mula was derived by Spruit (1981):

ω2
Sp81 =

g

8H
1

2β + 1
, (1)

where g is the gravity projected along the loop, H the pressure
scale height, and β the ratio between the gas and magnetic pres-
sures. For a typical isothermal atmosphere, this corresponds to
a cut-off period of 700 s (Spruit 1981). However, Lopin et al.
(2014) showed that this classical cut-off is suppressed when the
radial component of the magnetic field is taken into account.
Lopin & Nagorny (2017) later showed that transverse waves can
still be cut-off, provided a non-isothermal atmosphere. They pre-
dict the following cut-off frequency:

ω2
LN17 =

c2
k0

4H0H(z)

(
δ2

B
dH(z)

dz
+

H2(z)
z2

)
, (2)

where z is the altitude, ck0 is the kink speed at the base of atmo-
sphere (z = z0), H is the pressure scale height, H0 = H(z0), and
δ2

B =
(
B2

0i − B2
0e

)
/
(
B2

0i + B2
0e

)
is the relative difference between

the magnetic field inside (B0,i) and outside (B0,e) the flux tube, at
z = z0. Finally, an alternative formula was derived by Snow et al.
(2017):

ω2
Sn17 =

v2
A(z)
4z2 , (3)

where z is the altitude, and vA is the Alfvén speed.
In this article, we modelled the propagation of kink waves

in an open magnetic flux tube, embedded in a non-isothermal
atmosphere. The atmosphere extends from the chromosphere to
the corona, and includes gravitational stratification and thermal
conduction (Sect. 2). We drove kink waves at different periods,
and determined whether they experienced a cut-off (Sect. 3).
We compare these results to the three analytical formulas given
above in Sect. 4, and summarize our conclusions in Sect. 5.

2. Numerical model: magnetic flux tube through the
transition region

We modelled a vertical magnetic flux tube of radius R = 1 Mm
embedded in a stratified atmosphere, starting in the chromo-
sphere (altitude z = 0 Mm) and extending through the transi-
tion region (z ≈ 4 Mm) into the corona. Kink waves were ex-
cited in the flux tube by applying a monoperiodic driver at the
bottom of the domain (z = 0 Mm). In the upper half of the do-
main (z > 50 Mm), we implemented a “velocity rewrite layer”
to absorb the kink waves. The driver and the velocity rewrite
layer are described in Sect. 2.1. A sketch of the domain is shown
on Fig. 1. We solved the 3D MHD evolution of this tube using
the PLUTO code (Mignone et al. 2007), version 4.3. This code
solves the conservative MHD equations (mass continuity, mo-
mentum conservation, energy conservation, and induction equa-
tion). We used the corner transport upwind finite volume scheme,
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Fig. 1. Sketch of the simulation domain, showing the magnetic flux
tube, the location of the kink wave driver (bottom boundary), chromo-
sphere, transition region, corona, and velocity rewrite layer.

where characteristic tracing is used for the time stepping, and a
linear spatial reconstruction with a monotonized central differ-
ence limiter is performed. The magnetic field divergence was
kept small using the extended divergence cleaning method (gen-
eralized Lagrange multiplier, or GLM), and flux was computed
with the linearized Roe Riemann solver. We did not include ex-
plicit viscosity, resistivity, or cooling. However, numerical dis-
sipation results in higher effective viscosity and resistivity than
what is expected for the solar corona, as discussed by Karam-
pelas et al. (2019). We included a modified thermal conduction,
as described below.

The transition region between the chromosphere and the
corona is characterized by a very sharp temperature gradient.
Resolving such gradient requires a very high resolution along
the tube (∼ 1 km in the transition region). In order to keep com-
putational costs reasonable, we artificially broadened the tran-
sition region (thus reducing the temperature gradient). To that
end, we modified the thermal conductivity using the method de-
veloped by Linker et al. (2001); Lionello et al. (2009); Mikić
et al. (2013). Below the cut-off temperature Tc = 2.5 · 105 K,
the parallel thermal conductivity was set to κ‖ = C0T 5/2

c with
C0 = 9 · 10−12 Wm−1K−7/2. Above Tc, κ‖ = C0T 5/2. This al-
lowed us to use a resolution of 98 km along the tube. This grid
allows to fully resolve the broadened transition region, which
has a minimum temperature scale length of 1.6 Mm (see John-
ston & Bradshaw 2019). The dimensions of the domain were
(Lx, Ly, Lz) = (16, 6, 100) Mm. We used a uniform grid of
400× 150× 1024 cells, with a size of 40 km in the x and y direc-
tions, and 98 km in the z direction. Furthermore, we verified that
the results did not change significantly when using a resolution
of 40 km in the z direction. To that end, we ran a separate sim-
ulation and verified that the resulting cut-off altitude and com-
parison to the analytical formulas (see Sect. 4) were not strongly
modified. We note that such resolution is too costly in terms of
compute time to be used for all simulations in this work.

The strong stratification in the transition region makes it
challenging to obtain a relaxed initial state for the model. We
first initialized the domain with a field-aligned hydrostatic equi-
librium (Sect. 2.2). We then let the simulation relax in 2D for
47 ks (Sect. 2.3). Finally, we filled the 3D domain with this re-
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Fig. 2. Velocity-rewrite coefficient αv, applied to the velocity above
50 Mm so that upper-propagating waves are not reflected back into the
domain. αv is shown for different times of the 2D relaxation run. The
last profile (t ≥ 31.3 ks) is also applied in the 3D driven simulations.

laxed state through cylindrical symmetry, where we drove kink
waves of different periods for a duration up to 2.7 ks (Sect. 2.4).

2.1. Boundary conditions and driver

We first describe the boundary conditions used for the relaxation
(2D) and kink wave (3D) simulations.

Bottom boundary At the bottom boundary (base of the chro-
mosphere, z = 0), the density and pressure were extrapolated
using the hydrostatic equilibrium equation. The magnetic field
was extrapolated using the zero normal-gradient condition de-
scribed by Karampelas et al. (2019, section 2.4). For vz, we ei-
ther imposed a reflective boundary condition (2D relaxation, see
Sect. 2.3), or imposed vz = 0 (in 3D, see Sect. 2.4). We verified
that both boundary conditions give the same results in 3D sim-
ulations. The parallel velocity components vx and vy were set to
obey either a zero-gradient boundary condition (2D relaxation),
or to follow a driver that excites kink waves (in 3D). We used
a monoperiodic, dipole-like, driver developed by Pascoe et al.
(2010) and updated by Karampelas et al. (2017). Inside the tube,
the driver imposes:{
vx(x, y, t), vy(x, y, t)

}
= {v(t), 0} , (4)

where v(t) = v0 cos (2πt/P0), with v0 the driver amplitude, set
to 2 km s−1. The driver period, P0, was set to different values
in order to test the cut-off of kink waves. Outside the tube, the
driver imposes:

{
vx(x, y, t), vy(x, y, t)

}
= v(t)R2

{
(x − x0(t))2 − y2, 2 (x − x0(t)) y

}
(
(x − x0(t))2 + y2

)2 ,

(5)

where x0(t) = v0P0/(2π) · sin (2πt/P0) is the centre of the tube’s
footpoint at time t. This driver generates a kink wave polarized
in the x direction.

Upper boundary At the upper boundary (top of the corona, z =
100 Mm), the magnetic field was kept symmetric. All other vari-
ables obeyed a reflective boundary condition. In order to absorb
the upwards waves excited by the driver, we artificially modified
the velocity in the upper half of the domain (z > 50 Mm). At
each time step, after solving the MHD equations, we decreased

each component of the velocity vi by multiplying it by a quantity
αv . 1:

v′i = αv(t, z)vi. (6)

In the driven 3D simulations αv was kept constant in time, and
varied linearly along the loop, from 1 at z = zv = 50 Mm, to
αv,min = 0.9995 at z = L = 100 Mm:

αv,3D(z) =

1 if z ≤ zv,
1 −

(
1 − αv,min

) ( z−zv
L−zv

)
else.

(7)

In the 2D relaxation run, the first third of the simulation (t1/3 =
15.7 ks) was run without modifying the velocity (i.e. αv = 1).
During the second third, αv was linearly ramped down in time to
match the profile αv,3D(z) described above. Finally, the last third
of the simulation was run with the constant αv,3D(z):

αv,2D(z, t) =


1 if t ≤ t1/3,
1 −

(
1 − αv,3D(z)

) ( t−t1/3
t1/3

)
if t1/3 < t ≤ 2t1/3,

αv,3D(z) else.
(8)

The evolution of αv is shown in Fig. 2. This “velocity rewrite
layer” can successfully absorb the kink waves that are excited
by the driver at the bottom of the chromosphere. As a result,
these waves are not reflected at the upper boundary, and do not
propagate downwards back into the domain. We stress that the
solution obtained inside the velocity rewrite layer (i.e. above z =
50 Mm) is not physical, and that this layer should be considered
as a part of the upper boundary.

Side boundaries At the side boundaries (x and y axes), all vari-
ables obeyed a zero-gradient boundary condition. In the 2D re-
laxation run, we only simulated half of the tube radius (x > 0).
For these simulations, we imposed a reflective boundary condi-
tion on all variables at the centre of the tube (x = 0).

2.2. Initial conditions: field-aligned hydrostatic equilibrium

The simulation was initialized with a uniform vertical magnetic
field of magnitude B0 = 42 G. Along the tube, we imposed
the following temperature profile, derived from Aschwanden &
Schrijver (2002):

T (x, y, z) =


Tch if z ≤ ∆ch,

Tch + (Tcor(x, y) − Tch)
(
1 −

(
L−z

L−∆ch

)2
)0.3

else,

(9)

where z is the altitude, L is the height of the computational
domain, ∆ch = 4 Mm is thickness of the chromosphere, and
Tch = 20 000 K is the temperature in the chromosphere. We de-
fined the transverse temperature profile at the top of the domain,
Tcor(x, y), as:

Tcor(x, y) = Tcor,ext + (Tcor,int − Tcor,ext)ζ(x, y), (10)

where Tcor,int = 1.2 MK is the temperature inside the tube, and
Tcor,ext = 3.6 MK is the temperature outside the tube. The shape
of the profile was set by ζ(x, y):

ζ(x, y) =
1
2

[
1 − tanh

((√
x2 + y2/R − 1

)
b
)]
, (11)
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(a) Field-aligned hydrostatic equilibrium
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(b) 2D magnetohydrodynamic relaxation

Fig. 3. Temperature (black), density (red), and magnetic field magnitude (blue) profiles inside (r = 0 Mm; solid lines) and outside (r = 8 Mm;
dashed lines) the flux tube. (a) After solving the field-aligned hydrostatic equilibrium. (b) After the 2D magnetohydrodynamic relaxation.

where R = 1 Mm is the tube radius, and b = 5 is a dimensionless
number setting the width of the inhomogeneous layer between
the interior and exterior of the tube (l ≈ 6R/b). ζ(x, y) is close to
1 inside the tube, and to 0 outside.

We also set the density at the bottom of the chromosphere
(z = 0) to:

ρch(x, y, z = 0) = ρch,ext + (ρch,int − ρch,ext)ζ(x, y), (12)

where ρch,int = 3.51 · 10−8 kg m−3 is the density inside the tube,
and ρch,ext = 1.17 · 10−8 kg m−3 is the density outside. We then
integrated the field-aligned hydrostatic equilibrium equation nu-
merically using a Crank-Nicholson scheme. The profiles of the
imposed temperature and of the density resulting from the inte-
gration are shown in Fig. 3 (a). The temperature contrast (interior
temperature divided by exterior temperature) is 1 in the chromo-
sphere, and decreases to 1/3 in the corona. The density contrast
is 3 in the chromosphere, increases to around 7 in the transition
region, and decreases again to about 4 in the upper corona. The
pressure contrast is 3 in the chromosphere, and slowly decreases
to reach 1.2 in the upper corona.

However, this initial state is not in magnetohydrostatic
(MHS) equilibrium, because the pressure varies across the flux
tube, while the magnetic field does not. To fix this, we let the
tube relax by running a 2D magnetohydrodynamic simulation
(Sect. 2.3). We then used this relaxed state to initialize the 3D
simulation of kink waves (Sect. 2.4).

2.3. Flux tube relaxation (2D)

In order to obtain a flux tube in MHS equilibrium, we first
run a 2D simulation, initialized with the initial state described
in Sect. 2.2. The MHD equations were solved in a longitudi-
nal plane at y = 0 (see Fig. 1), with x ∈ [0, 8.56] Mm, and
z ∈ [0, 100] Mm. We used a uniform grid of 64× 2048 cells with
a size of 134 km×49 km. The resolution along z is higher than in
the 3D runs in order to resolve the sharper gradients in the tran-
sition region (see Fig. 3). We verified that a resolution of 40 km
in the x direction yielded the same results, by running a separate
2D simulation followed by a 3D driven simulation (P0 = 200 s),
and verifying that the cut-off altitude and comparison to the an-
alytical formulas (Sect. 4) were not significantly modified.

We let the system evolve for 47 ks, during which the velocity
rewrite parameter αv varied as described in Eq. (8). As a result
of the relaxation, periodic longitudinal flows with a velocity of
about 15 km s−1 develop along the tube. They are damped during
the later stages of the simulation, as the velocity rewrite layer is
gradually introduced. At the end of the relaxation run, residual
velocities are lower than 0.5 km s−1 everywhere in the domain.
The resulting temperature, density, and magnetic field profiles
are shown on Fig. 3 (b). Compared to the initial state (Fig. 3 a),
the transition region is significantly broadened, with a thickness
of about 7 Mm. This is the direct result of the modified thermal
conductivity used in this setup, and allows for a coarser resolu-
tion along the loop in the 3D simulations. In addition, the tem-
perature and density decrease, both inside and outside the tube.
Overall, the density contrast (ρint/ρext) decreases: it reaches 1
in the chromosphere, 1.2 in the transition region, and 1.8 in the
corona. The temperature contrast also changes to about 1.3 in
the transition, and about 0.8 in the corona. Finally, the magnetic
field amplitude contrast remains very close to 1 everywhere in
the domain (0.97 in the chromosphere and 1 in the corona), with
a magnitude of about 11 G everywhere in the domain. Compared
to the initial uniform magnetic field, the magnitude is divided by
about four, while the contrast remains close to 1. The final tem-
perature and density profile significantly differ from the initial
conditions of 2D relaxation run. However, this is not an issue, as
the goal of this study is to investigate how the analytical formulas
we consider (Spruit 1981; Lopin & Nagorny 2017; Snow et al.
2017) predict the cut-off frequency for a given temperature and
density profile. By using the relaxed profiles as an input to these
analytical formulas, we obtained predictions for the relaxed sys-
tem.

This relaxed 2D simulation was then mapped onto the 3D
domain through cylindrical symmetry. We used a rotation about
the line x = 0 (i.e. the centre of the loop), and a trilinear interpo-
lation to project onto the 3D Cartesian grid.

2.4. Kink waves propagation (3D)

In order to simulate the propagation of kink waves from the chro-
mosphere to the corona, we drove the 3D simulations with the
monoperiodic, dipole-like, driver described in Eqs. (4) and (5).
We ran four simulations, with different driver periods P0: 200 s,
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Fig. 4. Kink waves transverse velocity (vx) at the loop centre (x = y = 0), as a function of altitude and time. The velocity is shown for four 3D
simulations with different driver periods P0, after an initial settling time of 2P0 (for P0 = 200 s, 335 s and 700 s), or 0.42P0 (for P0 = 2000 s). The
dashed black lines represent a propagation at the kink speed (see Eq. (13)), and are independent of the driver period.

335 s, 700 s, and 2000 s. The propagating kink waves generated
by the driver are absorbed by the velocity rewrite layer at the top
of the domain, and are thus not reflected downwards. The first
three simulations were run for a duration of 5P0. The last simula-
tion was run for 1.75P0. At the beginning of the simulations, the
system goes through an initial transitory phase before the propa-
gating kink wave is fully established (i.e. its amplitude does not
change with time). We waited for 2P0 (0.42P0 for P0 = 2000 s)
for the kink wave to enter a stable sinusoidal regime. After this
duration, we saved high-cadence snapshots at the centre of the
loop (line x = y = 0). For all further analysis, we used the snap-
shots saved after the transitory phase. The transverse velocity vx
at the loop centre is shown in Fig. 4. As can be seen on this
figure, the amplitude of the kink wave decreases as the period
increases. For the two longer driver periods (700 and 2000 s),
the amplitude of the kink wave is small enough for some pertur-
bations to become visible. They travel at the Alfvén speed, and
appear to be triggered by the flows remaining after the relaxation
(see Sect. 2.3). These perturbations have amplitudes smaller than
0.2 km s−1, and should thus have no effect on the wave.

3. Results: cut-off and tunnelling of transverse
waves

In order to determine whether the kink waves driven in the 3D
simulations are experiencing a cut-off, we looked at the evolution
of the velocity amplitude (Sect. 3.1), as well as the phase speed
(Sect. 3.2) as a function of altitude. The analysis of these profiles
allows us to establish that the transverse waves are subject to a
low-frequency cut-off in the transition region.

3.1. Wave amplitude increases with frequency

In order to compute the velocity amplitude of the kink wave, we
fitted the function Ax(z) sin (ω(z)t + φ(z)) to the transverse ve-
locity vx(z, t), at each altitude (z). Ax(z) is the velocity amplitude,
ω(z) is the kink wave frequency, and φ(z) is the phase. The fre-
quency varies by less than 1 % with altitude, confirming theoret-
ical understanding. The velocity amplitude is shown in Fig. 5.
In all simulations, the wave amplitude increases with altitude,
because of the density decreases with altitude and energy con-
servation. Across simulations, the amplitude at a given altitude
increases with the frequency of the wave. This means that kink
waves with higher frequencies propagate better from the chro-
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Fig. 5. Velocity amplitude of kink waves, as a function of altitude. The
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same axes as the main figure, with a zoom-in on the vertical axis.

mosphere to the corona. This would be consistent with the low-
frequency cut-off predicted by analytical models (see Sect. 1).

3.2. Evanescent waves in the transition region

To determine the altitude at which the waves are cut-off, we
compared their phase speed vp(z) to the kink speed of the
flux tube ck(z). The inverse phase speed is equivalent to the
phase difference ∆φ(z) between two altitudes separated by ∆z:
1/vp(z) = ∆φ(z)/(ω∆z). The phase difference has been success-
fully used to determine the cut-off frequency of acoustic and
slow-magnetosonic waves in observations (Centeno et al. 2006;
Felipe et al. 2010; Krishna Prasad et al. 2017; Felipe et al. 2018),
and in simulations (Felipe & Sangeetha 2020). In these articles,
the authors determine the phase speed for a wide range of fre-
quencies, but at a limited number of altitude positions. In the
present study however, we could only examine four frequencies,
because of the high computational cost of a simulation. However,
we computed the phase difference at all altitudes of the simula-
tion domain. This allows us to determine the altitude at which
the wave is cut-off.
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The phase speed at a given altitude z was computed from the
transverse velocity in the cells above and below, that is vx(t, z +
∆z/2) and vx(t, z − ∆z/2), where ∆z = 98 km is the cell size.
We apodized these velocity time series with a Hann window,
and computed the cross-correlation C(τ, z) = vx(t, z + ∆z/2) ?
vx(t, z−∆z/2). We then determined the time delay ∆τ(z), by find-
ing the maximum of C(τ, z). To that end, we fitted the function
A + B cos (ω(τ − ∆τ)/δ) to C(τ, z), with τ ∈ [−P0/4,+P0/4]. Fi-
nally, the phase difference was given by ∆φ(z) = ω∆τ(z), and the
inverse phase speed by 1/vp(z) = ∆τ(z)/∆z. The inverse phase
speed is shown on Fig. 6, alongside the inverse kink speed for
the simulated flux tube. The kink speed ck is calculated using:

c2
k(z) =

ρi(z)v2
A i(z) + ρe(z)v2

A e(z)
ρi(z) + ρe(z)

, (13)

where ρ(z) is the density, vA(z) = B(z)/
√
µ0ρ(z) is the Alfvén

speed, B(z) is the magnetic field amplitude, and µ0 is the mag-
netic permittivity of vacuum. The indices i and e correspond,
respectively, to internal and external quantities relatively to the
flux tube, and are taken at x = 0 and x = 8 Mm.

In simulations with short driver periods, the inverse phase
speed is somewhat smaller than the inverse kink speed in the
chromosphere and transition region (vp/ck ≈ 2 for P0 = 200 s,
and 5 for P0 = 335 s), and equals the inverse kink speed in the
corona. On the other hand, in simulations with longer periods,
the inverse phase speeds are much lower than the inverse kink
speed below a given altitude. For P0 = 700 s, 1/vp is about 250
times smaller than 1/ck below z = 1 Mm. For P0 = 2000 s, a
similar drop occurs below z = 20 Mm.

For a propagating kink wave, the inverse phase speed is ex-
pected to be equal to the inverse kink speed. Conversely, stand-
ing and evanescent (i.e. cut-off) waves have inverse phase speeds
smaller than the inverse kink speed. Thus, the decreased inverse
phase speed for higher periods indicates that the waves are cut-
off in at least some regions.

To distinguish between the standing and evanescent cases,
we have also looked at the wave amplitude (Fig. 5). In the
absence of vertical stratification, the amplitude of evanescent
waves decreases with altitude. However, in a stratified atmo-
sphere (our case), the amplitude increases with altitude because
of the density decrease, even for evanescent waves. On Fig. 5, the
amplitude of waves with longer periods (for which 1/vp � 1/ck)
increases less with altitude compared to waves with shorter pe-
riods (for which 1/vp . 1/ck). We thus conclude that the waves
with longer periods are evanescent in parts of the low atmo-
sphere, where their inverse phase speed is much lower than the
inverse kink speed. This means that these long-period waves are
cut-off in the transition region.

3.3. Wave tunnelling at higher frequencies

Waves with shorter periods (P0 = 200 and 335 s) also show signs
of cut-off at low altitudes. Below z = 3 Mm, the inverse phase
speed 1/vp is lower than the inverse kink speed 1/ck (Fig. 6),
and the amplitude increase with altitude is smaller for P0 = 335 s
than for P0 = 200 s (Fig. 5). However, this cut-off is significantly
weaker than in the long-period case. This is explained by the fact
that the cut-off region (where 1/vp < 1/ck) is narrower for short
periods (∼ 1 Mm) than for long periods (∼ 10 Mm). As a result,
short-period waves can tunnel through the cut-off region, and
propagate into the corona. Furthermore, the weak attenuation in
the cut-off region (1/vp . 1/ck) results further reduces the effect
of the cut-off.
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Fig. 6. Inverse phase speed of the kink wave (1/vp), and inverse kink
speed of the flux tube (1/ck), as a function of altitude. The phase speed
is given for four different driver periods (P0).
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Fig. 7. Kink wave cut-off frequency as a function of altitude, from an-
alytical models (left column of the legend), and from our numerical
simulations (right column of the legend). We show the analytical pre-
dictions of Spruit (1981, SP81), Snow et al. (2017, Sn17), and of Lopin
& Nagorny (2017, LN17) (coloured lines). For the last model, we com-
puted the cut-off frequency for different values of z0, the “base of the
atmosphere”. We show the cut-off altitude (zc) for the four simulations
that we ran with different driver frequencies (black markers). The cut-
off altitudes are computed with different thresholds tr, indicated on the
legend and described in the text.

4. Discussion: comparison to analytical formulas

In order to compare our simulations to the analytical models,
we quantified the cut-off frequency as a function of altitude. We
define zc, the altitude at which ck/vp goes above a given threshold
tr. This corresponds to the altitude where the wave leaves the cut-
off regime and enters the propagating regime. That is, the cut-
off altitude. We computed zc for four values of tr between 0.2
and 0.5. Considering the four simulations with different driver
frequencies ω, we obtained the cut-off altitude as a function of
the frequency, zc(ω). We compare this to the cut-off frequency as
a function of altitude, ωc(z), predicted by the analytical models
presented in Sect. 1.

Article number, page 6 of 8



G. Pelouze et al.: Cut-off of transverse waves

On Fig. 7, we show the cut-off frequency and altitude com-
puted in our simulations, for different values of tr (black points).
On the same figure, we show the predictions of the analytical
formulas of Spruit (1981, Eq. (1)), Lopin & Nagorny (2017,
Eq. (2)), and Snow et al. (2017, Eq. (3)) (coloured lines), com-
puted for the temperature and density profiles used in our simu-
lations. We implement the formula of Lopin & Nagorny (2017)
for different values of z0, defined by the authors as “the base of
the atmosphere”, with no further details. Because this quantity
is not accurately defined, we used four values of z0 in the range
of 24 km (bottom cell of our simulation domain), to 1978 km.
This loosely defined parameter broadens the range for the cut-
off frequencies predicted by this formula. While the match is
rather loose, the cut-off altitude zc(ω) measured in our simula-
tions matches the overall variation the cut-off frequency ωc(z)
predicted by the Lopin & Nagorny (2017) formula. In particular,
the shape of the profiles are in good agreement. On the contrary,
the Snow et al. (2017) model correctly predicts the cut-off fre-
quency only in the lower transition region, but fails to do so in
the upper transition region and corona. In particular, their model
predicts a slower decrease of the cut-off frequency above 20 Mm,
while the simulations and the Lopin & Nagorny (2017) show a
continued decrease. Finally, the Spruit (1981) predictions are off
by almost an order of magnitude at all altitudes. Thus, the for-
mula of Lopin & Nagorny (2017) best predicts the cut-off fre-
quency of transverse waves at different altitudes.

While the broadened transition region in our simulations
could affect the altitude-dependence of the cut-off frequency, this
should have little impact on the validation of the analytical for-
mulas. Indeed, these formulas include the atmospheric stratifi-
cation through altitude-dependent profiles of either the pressure
scale height or the Alfvén speed (see Sect. 1). Because they make
no hypothesis on these profiles, they should be valid regardless
of the atmosphere considered. As such, the agreement with the
simulations should not depend on the broadening of the transi-
tion region, provided the appropriate profile is fed into the for-
mulas. After validating the Lopin & Nagorny (2017) formula by
comparing it to our simulations, it should be applicable to other
stratification profiles.

We note that while analytical formulas can predict the kink
cut-off frequency, this is not sufficient to know whether a kink
wave with a given frequency will propagate into the corona. To
that end, the thickness of the cut-off region and the strength of
the attenuation have to be taken into account. As shown by our
simulations, kink waves with higher frequencies (≥ 3 mHz) can
propagate into the corona by tunnelling through a region where
they are cut-off (Sect. 3.3). Furthermore, these waves only expe-
rience a weak attenuation, because their frequency is close to the
cut-off frequency. In fact, the cut-off frequency does not consti-
tute a clear-cut boundary between oscillatory and non-oscillatory
solutions. This was also reported for sound waves by Felipe &
Sangeetha (2020). Although the question of whether a solution
is oscillating is well-defined mathematically, this is not straight-
forward to translate into a single cut-off frequency (Schmitz &
Fleck 1998). For this reason, there exist several canonical def-
initions for cut-off frequencies, set within the continuous vari-
ation between the oscillating and non-oscillating regimes (see
e.g. Schmitz & Fleck 1998 for sound waves in the solar atmo-
sphere). As a result, cut-off frequencies are bound to be mere
indications, rather than strong constraints, on the physical be-
haviour of a wave (Chae & Litvinenko 2018).

5. Conclusions

Transverse waves are a candidate mechanism for heating the so-
lar corona. However, several analytical models predicted that
they are cut-off in the transition region. In order to assess
whether transverse waves can indeed heat the corona, it is thus
crucial to determine whether they can propagate through the
transition region. To that end, we have simulated the propagation
of transverse kink waves in an open magnetic flux tube, embed-
ded in an atmosphere extending from the chromosphere to the
corona. We found that transverse waves are indeed cut-off in the
lower solar atmosphere. However, only waves with low frequen-
cies (ν . 2 mHz) are significantly affected. At higher frequen-
cies, the cut-off occurs in a very thin layer (∼ 1 Mm), and results
in a weak attenuation. In this case, waves can tunnel through
the cut-off layer, experiencing little to no amplitude attenuation.
This means that transverse waves with high frequencies are able
to transport energy from the chromosphere to the corona, where
it can be dissipated and result in heating.

Furthermore, we compared our simulations to several ana-
lytical models that predict the cut-off frequency of transverse
waves. We conclude that the formula proposed by Lopin &
Nagorny (2017) gives the best prediction. While our simulations
use a broadened transition, we expect it to have little impact on
the validation of analytical formulas. As such, the formula by
Lopin & Nagorny (2017) should be able to predict the cut-off
frequency for any atmospheric stratification profile. We note that
while the cut-off frequency is a good first indicator of whether a
wave can propagate into the corona, it cannot alone predict the
whole behaviour of the wave. In particular, waves with frequen-
cies just below the cut-off frequency (that should thus be cut-off)
can still reach the corona, thanks to a combination of tunnelling,
and weak attenuation.
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